Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

Di- μ-chloro-bis $(\{2-[\mathrm{N}, \mathrm{N}-\mathrm{bis}(2-\mathrm{amino}-$ ethyl)amino- ${ }^{3} N$]ethylaminium $\}$ copper(II)) bis(naphthalene-1,5disulfonate) pentahydrate

Cai-Hong Chen, Jiwen Cai* and Xiao-Ming Chen

School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510275, People's Republic of China
Correspondence e-mail: puscjw@zsu.edu.cn

Received 25 June 2001
Accepted 24 September 2001
Online 22 December 2001

The title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{19} \mathrm{~N}_{4}\right)_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, is comprised of discrete $\left[\mathrm{Cu}_{2}(\text { tren })_{2} \mathrm{Cl}_{2}\right]^{2+}$ dimers \{tren is 2 -[N, N-bis(2-aminoethyl)amino]ethylaminium\} and naphtha-lene-1,5-disulfonate anions. Two Cl^{-}anions bridge two $\mathrm{Cu}^{\text {II }}$ ions, each of which is also coordinated by two of the primary and the tertiary amino N atoms of the tren ligand, giving each metal atom a distorted square-pyramidal coordination geometry. The cation lies about an inversion centre and the asymmetric unit also has two independent anions lying about inversion centres.

Figure 1
The molecular structure of (I) shown with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii and only the unique portions are labelled. Only three of the five water molecules are shown.

Comment

Copper(II) complexes with the formula $\left[\mathrm{Cu}_{2}(\text { tren })_{2} X_{2}\right]$ $\left(\mathrm{BPh}_{4}\right)_{2}$, where X is $\mathrm{CN}^{-}, \mathrm{NCO}^{-}, \mathrm{NCS}^{-}$or Cl^{-}, have been studied from both structural and magnetic points of view (Duggan \& Hendrickson, 1974a,b; Duggan et al., 1974; Laskowski et al., 1975). Each $\mathrm{Cu}^{\text {II }}$ ion in these compounds is five-coordinate in a trigonal-bipyramidal geometry, with tren as a tetradentate ligand and the X^{-}anion in an axial position. These $\left[\mathrm{Cu}_{2}(\text { tren })_{2^{-}} X_{2}\right]^{2+}$ ions dimerize via a hydrogen bond between the X group and a primary amine of tren coordinated to the second $\mathrm{Cu}^{\text {II }}$ ion. We report herein a novel dimeric $\mathrm{Cu}^{\text {II }}$ cation with the same basic formula as the above but with a different structure, viz. $\left[\mathrm{Cu}_{2}(\operatorname{tren})_{2} \mathrm{Cl}_{2}\right](1,5-\mathrm{nds})_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, (I) (1,5 -nds is naphthalene-1,5-disulfonate).

(I)

Crystals of (I) are comprised of discrete $\left[\mathrm{Cu}_{2}(\operatorname{tren})_{2} \mathrm{Cl}_{2}\right]^{2+}$ cations, 1,5 -nds anions and water molecules, as shown in Fig. 1. Two Cl^{-}anions bridge two $\mathrm{Cu}^{\text {II }}$ ions, each of which is also coordinated by two of the primary and the tertiary amino N atoms of the tren ligands, leaving two free ethylamine arms. A search of the Cambridge Structural Database (April 2001 release; Allen \& Kennard, 1993) indicates no previous observation of this kind of coordination mode of tren with $\mathrm{Cu}^{\mathrm{II}}$.

The coordination geometry of $\mathrm{Cu}^{\text {II }}$ in (I) can be described as a distorted square pyramid, as ascertained by Reedijk's τ factor (Addison et al., 1984) of 0.313 for Cu 1 and 0.331 for $\operatorname{Cu} 1 A(\tau=0$ for a square pyramid and 1 for a trigonal bipyramid). Atoms N1, N2 and N3 of the tren ligand and atom Cl 1 are nearly coplanar, constituting the base of one pyramid, while $\mathrm{Cl} 1 A$ occupies the apical position. As a result, the geometry of the complex consists of two square pyramids sharing one common base-to-apex edge, with the two bases nearly parallel to each other (dihedral angle 1.6°).

The reported geometry of $\mathrm{Cu}^{\mathrm{II}}$ dimers with the general formula $\left[\mathrm{N}_{3} \mathrm{Cu}(\mu-\mathrm{Cl})_{2} \mathrm{CuN}_{3}\right]$ has been classified into three types (Rodríguez \& Llobet, 1999). The arrangement in (I) belongs to type II. The $\mathrm{Cu}-\mathrm{N}$ distances are
1.975 (3), 1.983 (2) and 2.081 (2) \AA. Obviously, the $\mathrm{Cu}-\mathrm{N}$ bonds in which N is cis to the basal Cl are slightly shorter than that in which N is trans to the basal Cl . This phenomenon is different from that in $\left[\mathrm{Cu}_{2}(\text { dien })_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (dien is diethylenetriamine; Hoffmann et al., 1984), with the same geometry and $\mathrm{N}_{3} \mathrm{Cl}_{2}$ coordination environment, but similar to that in $\left[\mathrm{Cu}_{2}(\mathrm{dpt})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2}$ (dpt is dipropylenetriamine; Rodríguez \& Llobet, 1999).

With regard to the $\left[\mathrm{Cu}(\mu-\mathrm{Cl})_{2} \mathrm{Cu}\right]$ core of (I), the dimeric unit has unsymmetrical $\mathrm{Cu}-\mathrm{Cl}$ bridging distances of 2.2819 (7) and 2.6320 (7) \AA. The bridging $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ angle is $91.46(3)^{\circ}$ and $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$ is $88.54(3)^{\circ}$. All of the bond distances and angles are close to those found in $\left.\left[\mathrm{Cu}_{2} \text { (dien) }\right)_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Hoffmann et al., 1984). The $\mathrm{Cu} \cdots \mathrm{Cu}$ separation is 3.5269 (8) \AA, which is slightly shorter than the values reported in analogous compounds (Hoffmann et al., 1984; Rodríguez \& Llobet, 1999).

The coordination mode of tren, the mode of dimerization and the coordination geometry in (I) are quite different from those in $\left[\mathrm{Cu}_{2}(\text { tren })_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{BPh}_{4}\right)_{2}$, (II) (Laskowski et al., 1975), although the two compounds have the same cation formula, i.e. $\left[\mathrm{Cu}_{2}(\operatorname{tren})_{2} \mathrm{Cl}_{2}\right]^{2+}$. In (II), each $\mathrm{Cu}^{\text {II }}$ centre is coordinated by a Cl^{-}ligand and all four amino N atoms of tren, and the $\mathrm{Cu}^{\mathrm{II}}$ centres are dimerized by two complementary hydrogen bonds between Cl^{-}and a primary amine of tren. Moreover, the local copper environment in (II) is a distorted trigonal bipyramid $\left(\mathrm{N}_{4} \mathrm{Cl}\right)$, while in (I), it is a distorted square pyramid $\left(\mathrm{N}_{3} \mathrm{Cl}_{2}\right)$.

Experimental

Disodium naphthalene-1,5-disulfonate ($0.17 \mathrm{~g}, 0.5 \mathrm{mmol}$) was added to an aqueous solution of cupric chloride $(0.09 \mathrm{~g}, 0.5 \mathrm{mmol})$. The solution was then treated with tris(2 -aminoethyl)amine $(0.076 \mathrm{~g}$, 0.5 mmol). The resulting solution was allowed to stand at room temperature. After 10 d , blue block-shaped crystals of (I) were collected in 10% yield.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{19} \mathrm{~N}_{4}\right)_{2} \mathrm{Cl}_{2}\right]-$
$\left(\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1155.10$
Triclinic, $P \overline{1}$
$a=9.9348(15) \AA$
$b=11.5498(17) \AA$
$c=11.9637(17) \AA$
$\alpha=71.806(3)^{\circ}$
$\beta=75.622(3)^{\circ}$
$\gamma=66.844(2)^{\circ}$
$V=1186.6(3) \AA^{\circ}$

Data collection

Bruker SMART CCD area-detector	4786 independent reflections
diffractometer	4259 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.017$
Absorption correction: multi-scan	$\theta_{\max }=26.4^{\circ}$
$(S A D A B S ;$ Blessing, 1995)	$h=-12 \rightarrow 12$
$T_{\min }=0.743, T_{\max }=0.884$	$k=-14 \rightarrow 13$
7629 measured reflections	$l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0786 P)^{2} \\
&+0.7132 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=1.08 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.52 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Table 1

Hydrogen-bonding geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 1 W A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.86	2.12	2.975 (3)	172
$\mathrm{O} 1 W-\mathrm{H} 1 W B \cdots \mathrm{O} 2$	0.83	2.07	2.883 (3)	165
$\mathrm{O} 2 W-\mathrm{H} 2 W A \cdots \mathrm{O} 4$	1.09	1.98	3.009 (4)	156
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O} 5^{\text {ii }}$	0.85	2.28	3.025 (3)	146
$\mathrm{O} 2 W-\mathrm{H} 2 W B \cdots \mathrm{O}^{\text {ii }}$	0.85	2.56	3.238 (4)	138
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 1 W^{\text {iii }}$	0.90	2.10	2.982 (4)	167
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2 W^{\text {iv }}$	0.90	2.20	2.945 (4)	140
$\mathrm{N} 2-\mathrm{H} 2 A \cdots \mathrm{O} 4^{\text {iv }}$	0.90	2.48	3.226 (4)	141
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{O} 1 W^{\text {iv }}$	0.90	2.11	2.977 (4)	160
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B} \cdots \mathrm{O} 4$	0.89	2.11	2.941 (3)	154
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O} 1^{\text {iii }}$	0.89	2.00	2.879 (3)	170
N4-H4D . ${ }^{\text {O3 }}$	0.89	1.98	2.845 (4)	164

Symmetry codes: (i) $-x,-1-y,-z$; (ii) $-1-x,-y, 1-z$; (iii) $-1-x,-y,-z$; (iv) $x-1, y, z$.

The H atoms of the tren ligands and the 1,5-nds anions were placed in idealized positions $\left(\mathrm{N}-\mathrm{H}=0.90\right.$ and $0.89 \AA$ for NH_{2} and NH_{3}, respectively, and $\mathrm{C}-\mathrm{H}=0.97$ and $0.93 \AA$ for CH_{2} and CH , respectively) and refined as riding atoms. The H atoms of water molecules $\mathrm{O} 1 W$ and $\mathrm{O} 2 W$ were located from a difference Fourier map and not refined and those of the O3W water molecule were not located.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998).

This project was supported by the Guangdong Provincial Natural Science Foundation of China (No. 990208).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1201). Services for accessing these data are described at the back of the journal.

References

Addison, A. D., Rao, T. N., Reedijk, J., Rijn, J. V. \& Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Blessing, R. (1995). Acta Cryst. A51, 33-38.
Bruker (1998). SMART (Version 5.0) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus. Version 6.0. Bruker AXS Inc., Madison, Wisconsin, USA.
Duggan, D. M. \& Hendrickson, D. N. (1974a). Inorg. Chem. 13, 1911-1916.
Duggan, D. M. \& Hendrickson, D. N. (1974b). Inorg. Chem. 13, 2929-2940.
Duggan, D. M., Jungst, R. G., Mann, K. R., Stucky, G. D. \& Hendrickson, D. N. (1974). J. Am. Chem. Soc. 122, 3443-3450.

Hoffmann, S. K., Towle, D. K. \& Hatfield, W. E. (1984). Mol. Cryst. Liq. Cryst. 107, 161-170.
Laskowski, E. J., Duggan, D. M. \& Hendrickson, D. N. (1975). Inorg. Chem. 14, 2449-2459.
Rodríguez, M. \& Llobet, A. (1999). Inorg. Chem. 38, 2328-2334.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

