Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

Di- μ -chloro-bis({2-[N,N-bis(2-aminoethyl)amino- κ^3N]ethylaminium}copper(II)) bis(naphthalene-1,5disulfonate) pentahydrate

Cai-Hong Chen, Jiwen Cai* and Xiao-Ming Chen

School of Chemistry and Chemical Engineering, Zhongshan University, Guangzhou 510275, People's Republic of China Correspondence e-mail: puscjw@zsu.edu.cn

Received 25 June 2001 Accepted 24 September 2001 Online 22 December 2001

The title compound, $[Cu_2(C_6H_{19}N_4)_2Cl_2](C_{10}H_6O_6S_2)_2\cdot 5H_2O$, is comprised of discrete $[Cu_2(tren)_2Cl_2]^{2+}$ dimers {tren is 2-[N,N-bis(2-aminoethyl)amino]ethylaminium} and naphthalene-1,5-disulfonate anions. Two Cl⁻ anions bridge two Cu^{II} ions, each of which is also coordinated by two of the primary and the tertiary amino N atoms of the tren ligand, giving each metal atom a distorted square-pyramidal coordination geometry. The cation lies about an inversion centre and the asymmetric unit also has two independent anions lying about inversion centres.

Comment

Copper(II) complexes with the formula $[Cu_2(tren)_2X_2]$ -(BPh₄)₂, where X is CN⁻, NCO⁻, NCS⁻ or Cl⁻, have been studied from both structural and magnetic points of view (Duggan & Hendrickson, 1974*a*,*b*; Duggan *et al.*, 1974; Laskowski *et al.*, 1975). Each Cu^{II} ion in these compounds is five-coordinate in a trigonal-bipyramidal geometry, with tren as a tetradentate ligand and the X⁻ anion in an axial position. These $[Cu_2(tren)_2 - X_2]^{2+}$ ions dimerize *via* a hydrogen bond between the X group and a primary amine of tren coordinated to the second Cu^{II} ion. We report herein a novel dimeric Cu^{II} cation with the same basic formula as the above but with a different structure, *viz*. $[Cu_2(tren)_2Cl_2](1,5-nds)_2 \cdot 5H_2O$, (I) (1,5-nds is naphthalene-1,5-disulfonate).

Crystals of (I) are comprised of discrete $[Cu_2(tren)_2Cl_2]^{2+}$ cations, 1,5-nds anions and water molecules, as shown in Fig. 1. Two Cl⁻ anions bridge two Cu^{II} ions, each of which is also coordinated by two of the primary and the tertiary amino N atoms of the tren ligands, leaving two free ethylamine arms. A search of the Cambridge Structural Database (April 2001 release; Allen & Kennard, 1993) indicates no previous observation of this kind of coordination mode of tren with Cu^{II}.

The coordination geometry of Cu^{II} in (I) can be described as a distorted square pyramid, as ascertained by Reedijk's τ factor (Addison *et al.*, 1984) of 0.313 for Cu1 and 0.331 for

Figure 1

The molecular structure of (I) shown with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii and only the unique portions are labelled. Only three of the five water molecules are shown.

Cu1A ($\tau = 0$ for a square pyramid and 1 for a trigonal bipyramid). Atoms N1, N2 and N3 of the tren ligand and atom Cl1 are nearly coplanar, constituting the base of one pyramid, while Cl1A occupies the apical position. As a result, the geometry of the complex consists of two square pyramids sharing one common base-to-apex edge, with the two bases nearly parallel to each other (dihedral angle 1.6°).

The reported geometry of Cu^{II} dimers with the general formula $[N_3Cu(\mu-Cl)_2CuN_3]$ has been classified into three types (Rodríguez & Llobet, 1999). The arrangement in (I) belongs to type II. The Cu–N distances are

1.975 (3), 1.983 (2) and 2.081 (2) Å. Obviously, the Cu-N bonds in which N is *cis* to the basal Cl are slightly shorter than that in which N is *trans* to the basal Cl. This phenomenon is different from that in $[Cu_2(dien)_2Cl_2](ClO_4)_2$ (dien is diethylenetriamine; Hoffmann *et al.*, 1984), with the same geometry and N₃Cl₂ coordination environment, but similar to that in $[Cu_2(dpt)_2Cl_2]Cl_2$ (dpt is dipropylenetriamine; Rodríguez & Llobet, 1999).

With regard to the $[Cu(\mu-Cl)_2Cu]$ core of (I), the dimeric unit has unsymmetrical Cu-Cl bridging distances of 2.2819 (7) and 2.6320 (7) Å. The bridging Cu-Cl-Cu angle is 91.46 (3)° and Cl-Cu-Cl is 88.54 (3)°. All of the bond distances and angles are close to those found in $[Cu_2(dien)_2Cl_2](ClO_4)_2$ (Hoffmann *et al.*, 1984). The Cu···Cu separation is 3.5269 (8) Å, which is slightly shorter than the values reported in analogous compounds (Hoffmann *et al.*, 1984; Rodríguez & Llobet, 1999).

The coordination mode of tren, the mode of dimerization and the coordination geometry in (I) are quite different from those in $[Cu_2(tren)_2Cl_2](BPh_4)_2$, (II) (Laskowski *et al.*, 1975), although the two compounds have the same cation formula, *i.e.* $[Cu_2(tren)_2Cl_2]^{2+}$. In (II), each Cu^{II} centre is coordinated by a Cl⁻ ligand and all four amino N atoms of tren, and the Cu^{II} centres are dimerized by two complementary hydrogen bonds between Cl⁻ and a primary amine of tren. Moreover, the local copper environment in (II) is a distorted trigonal bipyramid (N₄Cl), while in (I), it is a distorted square pyramid (N₃Cl₂).

Experimental

Disodium naphthalene-1,5-disulfonate (0.17 g, 0.5 mmol) was added to an aqueous solution of cupric chloride (0.09 g, 0.5 mmol). The solution was then treated with tris(2-aminoethyl)amine (0.076 g, 0.5 mmol). The resulting solution was allowed to stand at room temperature. After 10 d, blue block-shaped crystals of (I) were collected in 10% yield.

Z = 1

 $D_x = 1.616 \text{ Mg m}^{-3}$ Mo *K* α radiation

reflections

 $\mu = 1.26 \text{ mm}^{-1}$

T = 293 (2) K

Block, blue

 $\theta=2.3{-}26.4^\circ$

Cell parameters from 843

 $0.25\,\times\,0.25\,\times\,0.10$ mm

Crystal data

$[Cu_2(C_6H_{19}N_4)_2Cl_2]$ -
$(C_{10}H_6O_6S_2)_2 \cdot 5H_2O$
$M_r = 1155.10$
Triclinic, $P\overline{1}$
a = 9.9348 (15) Å
b = 11.5498 (17) Å
c = 11.9637 (17) Å
$\alpha = 71.806 \ (3)^{\circ}$
$\beta = 75.622 \ (3)^{\circ}$
$\gamma = 66.844 \ (2)^{\circ}$
$V = 1186.6 (3) \text{ Å}^3$

Data collection

Bruker SMART CCD area-detector diffractometer	4786 independent reflections 4259 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.017$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.4^{\circ}$
(SADABS; Blessing, 1995)	$h = -12 \rightarrow 12$
$T_{\min} = 0.743, \ T_{\max} = 0.884$	$k = -14 \rightarrow 13$
7629 measured reflections	$l = -14 \rightarrow 14$

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0786P)^2]$
R(F) = 0.041	+ 0.7132P]
$wR(F^2) = 0.118$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
4786 reflections	$\Delta \rho_{\rm max} = 1.08 \ {\rm e} \ {\rm \AA}^{-3}$
301 parameters	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1 Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1W - H1WA \cdots O2^{i}$	0.86	2.12	2.975 (3)	172
$O1W - H1WB \cdots O2$	0.83	2.07	2.883 (3)	165
$O2W - H2WA \cdots O4$	1.09	1.98	3.009 (4)	156
$O2W - H2WB \cdots O5^{ii}$	0.85	2.28	3.025 (3)	146
O2W−H2WB···O6 ⁱⁱ	0.85	2.56	3.238 (4)	138
$N1 - H1A \cdots O1W^{iii}$	0.90	2.10	2.982 (4)	167
$N1 - H1B \cdot \cdot \cdot O2W^{iv}$	0.90	2.20	2.945 (4)	140
$N2-H2A\cdots O4^{iv}$	0.90	2.48	3.226 (4)	141
$N2-H2B\cdotsO1W^{iv}$	0.90	2.11	2.977 (4)	160
$N4 - H4B \cdot \cdot \cdot O4$	0.89	2.11	2.941 (3)	154
$N4-H4C\cdotsO1^{iii}$	0.89	2.00	2.879 (3)	170
$N4 - H4D \cdots O3$	0.89	1.98	2.845 (4)	164

Symmetry codes: (i) -x, -1 - y, -z; (ii) -1 - x, -y, 1 - z; (iii) -1 - x, -y, -z; (iv) x - 1, y, z.

The H atoms of the tren ligands and the 1,5-nds anions were placed in idealized positions (N-H = 0.90 and 0.89 Å for NH₂ and NH₃, respectively, and C-H = 0.97 and 0.93 Å for CH₂ and CH, respectively) and refined as riding atoms. The H atoms of water molecules O1W and O2W were located from a difference Fourier map and not refined and those of the O3W water molecule were not located.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART*; data reduction: *SAINT-Plus* (Bruker, 1999); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1998).

This project was supported by the Guangdong Provincial Natural Science Foundation of China (No. 990208).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DA1201). Services for accessing these data are described at the back of the journal.

References

- Addison, A. D., Rao, T. N., Reedijk, J., Rijn, J. V. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
- Blessing, R. (1995). Acta Cryst. A51, 33-38.
- Bruker (1998). SMART (Version 5.0) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT-Plus. Version 6.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duggan, D. M. & Hendrickson, D. N. (1974a). Inorg. Chem. 13, 1911-1916.
- Duggan, D. M. & Hendrickson, D. N. (1974b). Inorg. Chem. 13, 2929-2940.
- Duggan, D. M., Jungst, R. G., Mann, K. R., Stucky, G. D. & Hendrickson, D. N. (1974). J. Am. Chem. Soc. 122, 3443–3450.
- Hoffmann, S. K., Towle, D. K. & Hatfield, W. E. (1984). *Mol. Cryst. Liq. Cryst.* **107**, 161–170.
- Laskowski, E. J., Duggan, D. M. & Hendrickson, D. N. (1975). *Inorg. Chem.* 14, 2449–2459.
- Rodríguez, M. & Llobet, A. (1999). Inorg. Chem. 38, 2328-2334.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.